
hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Programming With C
hmehta.scs@dauniv.ac.in

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Arrays

A sequential collection

SCS

3

DAVV

hmehta.scs@dauniv.ac.in

Arrays

� An array is a collection of variables of the same type that are referred to
through a common name.

� A specific element in an array is accessed by an index. In C, all arrays
consist of contiguous memory locations.

� The lowest address corresponds to the first element and the highest
address to the last element.

� Arrays can have from one to several dimensions.

SCS

4

DAVV

hmehta.scs@dauniv.ac.in

Single-Dimensional Arrays

� Generic declaration:
typename variablename[size]
�typename is any type
�variablename is any legal variable name
�size is a constant number

� To define an array of ints with subscripts ranging from 0 to 9, use:
int a[10];

a[1]a[0] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

SCS

5

DAVV

hmehta.scs@dauniv.ac.in

Single-Dimensional Arrays

�Array declared using int a[10]; requires 10*sizeof(int) bytes of
memory

�To access individual array elements, use indexing: a[0]=10; x=a[2];
a[3]=a[2]; a[i]=a[i+1]+10; etc.

�To read a value into an array location, use scanf("%d",&a[3]);
�Accessing an individual array element is a fast operation

SCS

6

DAVV

hmehta.scs@dauniv.ac.in

How Array Indexing Works

� Array elements are stored contiguously (that is, in adjacent memory
locations)

� Address of the kth array element is the start address of the array (that is,
the address of the element at location 0) plus k * sizeof(each individual
array element)

� Example: Suppose we have int a[10]; where a begins at address 6000
in memory. Then a[5] begins at address 6000 + 5*sizeof(int)

SCS

7

DAVV

hmehta.scs@dauniv.ac.in

Using Constants to Define Arrays

� It is useful to define arrays using constants:
#define MONTHS 12
int array [MONTHS];

� However, in ANSI C, you cannot use:
int n;
scanf(“%d”, &n);
int array[n];

� GNU C allows variable length arrays – non-standard

SCS

8

DAVV

hmehta.scs@dauniv.ac.in

Array-Bounds Checking

� C, unlike many languages, DOES NOT check array bounds subscripts
during:
�Compilation
�Runtime

� Programmer must take responsibility for ensuring that array indices are
within the declared bounds

SCS

9

DAVV

hmehta.scs@dauniv.ac.in

Array-Bounds Checking

� If you access beyond the end of an array:
�C calculates the address as usual
�Attempts to treat the location as part of the array
�Program may continue to run,OR may crash with a memory

access violation error (segmentation fault, core dump error)
� It’s better if the program crashes right away – easier to debug

SCS

10

DAVV

hmehta.scs@dauniv.ac.in

Initializing Arrays

� Initialization of arrays can be done by a comma separated list following
its definition.

� Example: int array [4] = { 100, 200, 300, 400 };
is equivalent to:

int array [4];
array[0] = 100;
array[1] = 200;
array[2] = 300;
array[3] = 400;

� Or, you can let the compiler compute the array size: int array[] = { 100, 200,
300, 400};

SCS

11

DAVV

hmehta.scs@dauniv.ac.in

Example

#include <stdio.h>
int main() {
float expenses[12]={10.3, 9, 7.5, 4.3, 10.5, 7.5, 7.5, 8, 9.9,

10.2, 11.5, 7.8};
int count,month;
float total;
for (month=0, total=0.0; month < 12; month++)
{

total+=expenses[month];
}
for (count=0; count < 12; count++)

printf ("Month %d = %.2f \n", count+1, expenses[count]);
printf("Total = %.2f, Average = %.2f\n", total, total/12);
return 0;

}

SCS

12

DAVV

hmehta.scs@dauniv.ac.in

Multidimensional Arrays

� Arrays in C can have virtually as many dimensions as you want unlike
coordinate geometry.

� Definition is accomplished by adding additional subscripts:
int a [4] [3] ;

�defines a two dimensional array with 4 rows and 3 columns
�a can be thought of as a 1-dimensional array of 4 elements, where

each element is of type int[3]

SCS

13

DAVV

hmehta.scs@dauniv.ac.in

Multidimensional Arrays

a[0]

a[1]

a[2]

a[3]

a[0][2]a[0][0] a[0][1]

a[1][2]a[1][0] a[1][1]

a[3][2]a[3][0] a[3][1]

a[2][2]a[2][0] a[2][1]

The array declared using

int a [4] [3];

is normally thought of as a
table.

SCS

14

DAVV

hmehta.scs@dauniv.ac.in

Multidimensional Arrays

a[0] a[1] a[2] a[3]

a[0][2]a[0][0] a[0][1]

In memory, which is one-dimensional, the rows
of the array are actually stored contiguously.

increasing order of memory address

SCS

15

DAVV

hmehta.scs@dauniv.ac.in

Initializing Multidimensional Arrays

� Two ways to initialize a[4][3]:
int a[4] [3] = { {1, 2, 3} , { 4, 5, 6} , {7, 8, 9} , {10, 11, 12} };
int a[4] [3] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };

� These methods are equivalent to:
a[0][0] = 1;
a[0][1] = 2;
a[0][2] = 3;
a[1][0] = 4;
...
a[3][2] = 12;

SCS

16

DAVV

hmehta.scs@dauniv.ac.in

Example
#include <stdio.h>
#include <stdlib.h>
int main () {

int random1[8][8];
int a, b;
for (a = 0; a < 8; a++)

for (b = 0; b < 8; b++)
random1[a][b] = rand()%2;

for (a = 0; a < 8; a++)
{

for (b = 0; b < 8; b++)
printf ("%c " , random1[a][b] ? 'x' : 'o');

printf("\n");
}

return 0;
}

The function

int rand();

from <stdlib.h>
returns a random
int between 0 and
RAND_MAX, a
constant defined
in the same
library.

SCS

17

DAVV

hmehta.scs@dauniv.ac.in

The Value of the Array Name

#include <stdio.h>
int main(){

int a[3] = { 1, 2, 3 };
printf(“%d\n”, a[0]);
scanf(“%d”, &a[0]);
printf(“%d\n”, a[0]);
scanf(“%d”, a);
printf(“%d \n”, a[0]);

}

� When the array name is used
alone, its value is the address of
the array (a pointer to its first
element)

� &a has no meaning if used in
this program

SCS

18

DAVV

hmehta.scs@dauniv.ac.in

Arrays as Function Parameters

� The array address (i.e., the
value of the array name), is
passed to the function
inc_array()

� It is passed by value

void inc_array(int a[],int size);
main()
{

int test[3]={1,2,3};
int ary[4]={1,2,3,4};
int i;
inc_array(test,3);
for(i=0;i<3;i++)

printf("%d\n",test[i]);
inc_array(ary,4);
for(i=0;i<4;i++)

printf("%d\n",ary[i]);
return 0;

}

void inc_array(int a[], int size)
{

int i;
for(i=0;i<size;i++)
{

a[i]++;
}

}

SCS

19

DAVV

hmehta.scs@dauniv.ac.in

Example

void bubbleSort(int a[],int size)
{
int i, j, x;
for(i=0; i < size; i++)

for(j=i; j > 0; j--)
if(a[j] < a[j-1])
{ /* Switch a[j] and a[j-1] */

x=a[j]; a[j]=a[j-1]; a[j-1]=x;
}

}

Actual parameter
corresponding to formal
parameter a[] can be
any array of int values;
its declared size does not
matter

Function bubbleSort() sorts
the first size elements of
array a into ascending order

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Pointers

The likelihood of a program crashing is in direct proportion to
the number of pointers used in it.

SCS

21

DAVV

hmehta.scs@dauniv.ac.in

Pointer Variables

� Pointers are often referred to as references
� The value in a pointer variable is interpreted as a memory address
� Usually, pointer variables hold references to specific kinds of data (e.g.:

address of an int, address of a char, etc)

int * p; /* variable p can hold the address of a

memory location that contains an int */

char * chptr; /* chptr can hold the address of a

memory location that contains a char */

SCS

22

DAVV

hmehta.scs@dauniv.ac.in

Dereferencing Operator

� The expression *p denotes the memory cell to which p points
� Here, * is called the dereferencing operator
� Be careful not to dereference a pointer that has not yet been

initialized:

int *p;
p ?

*p = 7;

Address in p could
be any memory
location

Attempt to put a value into an unknown
memory location will result in a run-time
error, or worse, a logic error

SCS

23

DAVV

hmehta.scs@dauniv.ac.in

The Address Operator

� The expression &x denotes the address of a variable x
� Here, & is called the address operator or the reference

operator

int x, *p;

p ?x ?

p = &x;

*p = 4;

px ?

px 4

Value of x has
been changed
by *p = 4;

SCS

24

DAVV

hmehta.scs@dauniv.ac.in

The Null Pointer

� The null pointer is a special constant which is used to explicitly indicate
that a pointer does not point anywhere
�NULL is defined in the standard library <stdlib.h>
� In diagrams, indicated as one of:

NULL •

SCS

25

DAVV

hmehta.scs@dauniv.ac.in

Pointer Example
int *p, x, y, *q = NULL;

p = &x;

*p = 4;

p x

(or *p)

y4 ?

p = &y;

p x y4 ?

*p is now another
name for y

q

q .

.

SCS

26

DAVV

hmehta.scs@dauniv.ac.in

Pointer Example

*p = 8;

p x y4 8

q = p;

p x y4 8

q

*p or *q

q

*p

.

SCS

27

DAVV

hmehta.scs@dauniv.ac.in

Pointer Example

p = &x;

p x y4 8

*q

*p = *q;

p x y8 8

q

*p

q

*p

*q

SCS

28

DAVV

hmehta.scs@dauniv.ac.in

Arrays of Pointers

� It’s possible to have arrays of pointers
� The array name is a pointer to an array of pointers:

int * arrayOfPtr[4];

int j = 6; k = 4;

j k6 4

arrayOfPtr

? ? ? ?

0 1 2 3

Pointers in array are not
initialized yet

SCS

29

DAVV

hmehta.scs@dauniv.ac.in

Arrays of Pointers

arrayOfPtr[0] = &k;

arrayOfPtr[2]=&j;

j k

6 4

arrayOfPtr

?

0 1 2 3

?

SCS

30

DAVV

hmehta.scs@dauniv.ac.in

Array Names as Pointers

� Array name is really a pointer to the first element in the array
� Consider the declaration int arr[5];

� arr has the same meaning as &arr[0]
� *arr has the same meaning as arr[0]
� Indexing into an array is really a pointer dereferencing operation

SCS

31

DAVV

hmehta.scs@dauniv.ac.in

Array Names as Pointers

� Array name is really a pointer to the first element in the array
� Consider the declaration int arr[5];

� a[0] is same as *a or *(a+0)
�Similarly a[2] is same as *(a+2)
�Now *(a+2) is same as *(2+a)
�So 2[a] is same as a[2]

Therefore a[2], *(a+2), *(2+a) and 2[a].

SCS

32

DAVV

hmehta.scs@dauniv.ac.in

Generic Pointers

� Sometimes we need to use pointer variables that aren’t associated with
a specific data type

� In C, these generic pointers simply hold memory addresses, and are
referred to as pointers to void:

void* ptr;

SCS

33

DAVV

hmehta.scs@dauniv.ac.in

Generic Pointers

� Any kind of pointer can be stored in a variable whose type is void*
� If we know that a value in a pointer p of type void* is really of a specific

pointer type x, and we want to treat the value p points to as a value of
type x, we have to cast the pointer to type x

SCS

34

DAVV

hmehta.scs@dauniv.ac.in

Generic Pointer Example

void * arr[6];

int j=7;

double k = 5.9;

int * n;

double x;

j

arr

x

n

k

0 1 2 3 4 5

? ? ? ? ? ?

?

? 7

5.9

SCS

35

DAVV

hmehta.scs@dauniv.ac.in

Generic Pointer Example

arr[2] = (void*)&j; // type cast is okay, but not needed here

j

arr

x

n

k

0 1 2 3 4 5

? ? ? ? ?

?

? 7

5.9

SCS

36

DAVV

hmehta.scs@dauniv.ac.in

Generic Pointer Example

arr[5] = &k; // cast not needed, but could be used

j

arr

x

n

k

0 1 2 3 4 5

? ? ? ? ?

?

? 7

5.9

SCS

37

DAVV

hmehta.scs@dauniv.ac.in

Generic Pointer Example

n = (int*)arr[2]; // cast is required here

j

arr

x

n

k

0 1 2 3 4 5

? ? ? ?

?

7

5.9

SCS

38

DAVV

hmehta.scs@dauniv.ac.in

Generic Pointer Example

x = *((double*)arr[5]); // cast is required here

j

arr

x

n

k

0 1 2 3 4 5

? ? ? ?

5.9

7

5.9

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Dynamic Memory Allocation

Address allotment on the fly

SCS

40

DAVV

hmehta.scs@dauniv.ac.in

Dynamic Memory Allocation

� Up to now, any variables, including pointers, that we’ve created have
been static:
�They exist only while the module in which they’ve been created is

still executing
�They disappear automatically upon exit from the module

SCS

41

DAVV

hmehta.scs@dauniv.ac.in

Dynamic Memory Allocation

� We can create entities such as ints, chars, arrays and complex data
structures that will persist beyond exit from the module that built them

� This method of creating objects is called dynamic allocation of
memory

SCS

42

DAVV

hmehta.scs@dauniv.ac.in

Dynamic Memory Allocation

�Statically allocated variables are created within a call frame on the
call stack

�Dynamically allocated variables are created an area of memory
known as the heap

SCS

43

DAVV

hmehta.scs@dauniv.ac.in

Dynamic Memory Allocation in C

� Requires the use of pointer variables, and of one of the memory
allocation functions from <stdlib.h>

� malloc: the most commonly used memory allocation function
void * malloc(size_t size);
�Locates size consecutive bytes of free memory (memory that

is not currently in use) in the heap, and returns a generic
pointer to the block of memory

�Returns NULL instead if size bytes can’t be found

SCS

44

DAVV

hmehta.scs@dauniv.ac.in

Dynamic Memory Allocation in C

� Value returned by malloc is a generic pointer, and must be cast to the
specific type of pointer the user intended to create

double * ptr;

ptr = (double *) (malloc(sizeof(double)));

SCS

45

DAVV

hmehta.scs@dauniv.ac.in

Dynamic Memory Allocation in C

� Deallocation of dynamically allocated memory is not automatic
� No Java-style garbage collection occurs
� Programmer is responsible for recycling any dynamically allocated

memory that is no longer needed
� Must use the free() function from <stdlib.h>

SCS

46

DAVV

hmehta.scs@dauniv.ac.in

Dynamic Memory Allocation in C

void free(void * ptr);
�Parameter ptr is a pointer to the first byte of an entity that was

allocated from the heap
�At run-time, C checks the actual type of the pointer parameter to

determine exactly how many bytes to deallocate
�Any attempt to access deallocated memory is unsafe

SCS

47

DAVV

hmehta.scs@dauniv.ac.in

Dynamic Allocation – Example 1

int *p; Call stack Heap

p

?

p = (int*)malloc(sizeof(int));

p

*p = 24;

24p

*p

*p

?

free(p);

24p
unstable
memory

SCS

48

DAVV

hmehta.scs@dauniv.ac.in

Dynamic Allocation – Example 2

Pointer to an array:

double * arr;

arr = (double*)(malloc(5*sizeof(double)));

Call stack Heap

arr ?

arr ?????

arr[2] = 8.0;
arr ??8.0??

SCS

49

DAVV

hmehta.scs@dauniv.ac.in

Dynamic Allocation – Example 3
The following program is

wrong
#include <stdio.h>
int main()
{

int *p;
p = (int*)

(malloc(sizeof(int)));
scanf("%d",p);
…
return 0;

}

#include <stdio.h>
int main()
{

int *p;
scanf("%d",p);
…
return 0;

}

This one is correct:

SCS

50

DAVV

hmehta.scs@dauniv.ac.in

Dynamic Allocation – Example 4

Allocating an array of pointers:

int ** ptrArray;

int k = 7;

ptrArray = (int**)(malloc(4*sizeof(int*)));

Call stack Heap

ptrArray ????

k 7

SCS

51

DAVV

hmehta.scs@dauniv.ac.in

Dynamic Allocation – Example 4

ptrArray[0] = &k;

ptrArray[3] = (int*)(malloc(sizeof(int));

Call stack Heap

ptrArray ??

k 7
*(ptrArray[3])?

SCS

52

DAVV

hmehta.scs@dauniv.ac.in

Dynamic Memory Allocation in C

� calloc: Another commonly used memory allocation function
void *calloc(size_t nitems, size_t size);
�Locates (nitems*size) consecutive bytes of free memory

(memory that is not currently in use) in the heap, and returns
a generic pointer to the block of memory

�Returns NULL instead if size bytes can’t be found

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Pointers as Parameters in C

SCS

54

DAVV

hmehta.scs@dauniv.ac.in

#include <stdio.h>

void add1(int a, int *b) {

a++; (*b)++;

printf(“%d\n”, a);

printf(“%d\n”, *b);

return

}

int main() {

int j = 4; k = 8;

add1(j, &k);

printf(“%d\n”, j);

printf(“%d\n”, k);

return 0;

}

Example:
add1 accepts as parameters an int
a and a pointer to int b

The call in the main is made, a is
associated with a copy of main
program variable j, and b is
associated with a copy of the
address of main program variable k

Output from the program is:

5 (in add1)

9

4 (back in main)

9

SCS

55

DAVV

hmehta.scs@dauniv.ac.in

#include <stdio.h>

void add1(int a, int *b) {

a++; (*b)++;

printf(“%d\n”, a);

printf(“%d\n”, *b);

return

}

int main() {

int j = 4; k = 8;

add1(j, &k);

printf(“%d\n”, j);

printf(“%d\n”, k);

return 0;

}

Example (cont’d):
Call stack immediately before
the call to add1:

j k 84

SCS

56

DAVV

hmehta.scs@dauniv.ac.in

#include <stdio.h>

void add1(int a, int *b) {

a++; (*b)++;

printf(“%d\n”, a);

printf(“%d\n”, *b);

return

}

int main() {

int j = 4; k = 8;

add1(j, &k);

printf(“%d\n”, j);

printf(“%d\n”, k);

return 0;

}

Example (cont’d):
Call stack after the call to
add1, but before a++; is
executed:

j k 84

a b4

SCS

57

DAVV

hmehta.scs@dauniv.ac.in

#include <stdio.h>

void add1(int a, int *b) {

a++; (*b)++;

printf(“%d\n”, a);

printf(“%d\n”, *b);

return

}

int main() {

int j = 4; k = 8;

add1(j, &k);

printf(“%d\n”, j);

printf(“%d\n”, k);

return 0;

}

Example (cont’d):
After a++; is executed

j k 84

a b5

SCS

58

DAVV

hmehta.scs@dauniv.ac.in

#include <stdio.h>

void add1(int a, int *b) {

a++; (*b)++;

printf(“%d\n”, a);

printf(“%d\n”, *b);

return

}

int main() {

int j = 4; k = 8;

add1(j, &k);

printf(“%d\n”, j);

printf(“%d\n”, k);

return 0;

}

Example (cont’d):
After (*b)++; is executed

j k 94

a b5

SCS

59

DAVV

hmehta.scs@dauniv.ac.in

#include <stdio.h>

void add1(int a, int *b) {

a++; (*b)++;

printf(“%d\n”, a);

printf(“%d\n”, *b);

return

}

int main() {

int j = 4; k = 8;

add1(j, &k);

printf(“%d\n”, j);

printf(“%d\n”, k);

return 0;

}

Example (cont’d):
Upon returning from add1, its
call frame is popped from the
call stack, and execution
continues at the first printf in
main

j k 94

SCS

60

DAVV

hmehta.scs@dauniv.ac.in

Example: Pointer Parameters

� Suppose that a function has the prototype:

void fn(double * x, int ** k)

• Inside fn, x is of type double*, and *x is of type
double

• k is of type int**, *k is of type int*, and **k is of type
int

SCS

61

DAVV

hmehta.scs@dauniv.ac.in

Example: Pointer Parameters (cont’d)
� Assume the main program declarations:

double p=6.3, q, *dptr1=&p, *dptr2;

int a, b=15, *c=&b, *d=&a, *e, **f, **g=&e;

p

b

a

q

dptr1

dptr2

e

c

d
g

f

?

?

??

?

6.3

15

We will examine
a variety of valid
calls to fn

SCS

62

DAVV

hmehta.scs@dauniv.ac.in

Example: Pointer Parameters (cont’d)
Function call:

fn (&p, &c);

p

b

a

q

dptr1

dptr2

e

c

d g

f

?

?

??

?

6.3

15

Recall the
prototype:

void fn(double * x,

int ** k)

kx

Recall from main:

int b,*c=&b;

double p=6.3;

SCS

63

DAVV

hmehta.scs@dauniv.ac.in

Example: Pointer Parameters (cont’d)
Function call:

fn (dptr1, &d);

g

Recall the
prototype:

void fn(double * x,

int ** k)

Recall from main:

int a,*d=&a;

double p=6.3,

*dptr1=&p;

p

b

a

q

dptr1

dptr2

e

c

d g

f

?

?

??

?

6.3

15

kx

SCS

64

DAVV

hmehta.scs@dauniv.ac.in

Example: Pointer Parameters (cont’d)
Function call:

fn (&q, f);

p

b

a

q

dptr1

dptr2

e

c

d g

f

?

??

?

6.3

15

Recall the
prototype:

void fn(double * x,

int ** k)

kx

Recall from main:

int ** f;

double q;

Danger: f doesn’t
point at anything yet

??

??

SCS

65

DAVV

hmehta.scs@dauniv.ac.in

Example: Pointer Parameters (cont’d)
Function call:

fn (dptr2, &e);

p

b

a

q

dptr1

dptr2

e

c

d g

f

?

??

?

6.3

15

Recall the
prototype:

void fn(double * x,

int ** k)

kx

Recall from main:

int * e;

double * dptr2;

Danger: dptr2 is
uninitialized

??

??

SCS

66

DAVV

hmehta.scs@dauniv.ac.in

Example: Pointer Parameters (cont’d)
Function call:

fn (&p, g);

p

b

a

q

dptr1

dptr2

e

c

d g

f

?

??

?

6.3

15

Recall the
prototype:

void fn(double * x,

int ** k)

kx

Recall from main:

int *e, **g=&e;

double p=6.3;

?

SCS

67

DAVV

hmehta.scs@dauniv.ac.in

Why Use Pointer Parameters?

� So that the value being referenced can be modified by the function
� Efficiency: It takes less time and memory to make a copy of a reference

(typically a 2 or 4 byte address) than a copy of a complicated structure

SCS

68

DAVV

hmehta.scs@dauniv.ac.in

Arrays as Parameters

� C does not allow arrays to be copied as parameters
� Recall:

�Array name is really a pointer to the first element (location 0)
� Indexing with square brackets has the effect of dereferencing to a

particular array location

SCS

69

DAVV

hmehta.scs@dauniv.ac.in

Arrays as Parameters

� When we put an array name in a list of actual parameters, we are really
passing the pointer to the first element

� Do not use the address operator & when passing an array

SCS

70

DAVV

hmehta.scs@dauniv.ac.in

Arrays as Parameters

� Suppose that we wish to pass an array of integers to a function fn, along
with the actual number of array locations currently in use

� The following function prototypes are equivalent:

void fn(int * arr, int size);

void fn(int [] arr, int size);

SCS

71

DAVV

hmehta.scs@dauniv.ac.in

Example
#include <stdlib.h>

void init1 (int [] a, int s1, int * b, int s2) {

for (int j = 0; j < s1; j++)

a[j] = j;

for (int k = 0; k < s2; k++)

b[k] = s2 - k;

}

int main() {

int s[4], *t;

t = (int*)(malloc(6*sizeof(int));

t[0] = 6;

init1(s, 4, t, t[0]);

…

Could use int *a
and int[] b instead

We trace through
this code on the
next few slides

SCS

72

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

Before the call to init1:

s

t

? ? ? ?

6 ? ? ? ? ?

Call stack – main variables Heap

After execution of:

int s[4], *t;

t = (int*)(malloc(6*sizeof(int));

t[0] = 6;

SCS

73

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

After call to init1, but before its execution begins:

s

t

? ? ? ?

6 ? ? ? ? ?
Call stack Heap

Function prototype:

void init1 (int [] a, int s1,

int * b, int s2);

Function call:

init1(s, 4, t, t[0]);

a s1 b s2

64

local vars j and k have been ignored in the call frame for init1

SCS

74

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

After execution of init1, but before return to main:

s

t
Call stack

Heap

After:

for (int j = 0; j < s1; j++)

a[j] = j;

for (int k = 0; k < s2; k++)

b[k] = s2 - k;

a s1 b s2

64

local vars j and k have been ignored in the call frame for init1

0 1 2 3

6 5 4 3 2 1

SCS

75

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

After returning to main:

s

t

0 1 2 3

6 5 4 3 2 1

Call stack Heap

Call frame for the call to init1 has been recycled

SCS

76

DAVV

hmehta.scs@dauniv.ac.in

Why Is ‘**’ Needed?

� We may want a function to initialize or change a pointer
� Notation can also be used when creating or passing an array of pointers

SCS

77

DAVV

hmehta.scs@dauniv.ac.in

Example#include <stdlib.h>

#include<time.h>

void init2(int *** t, int ** j) {

int k = 3 + rand()%10;

*t = (int**)(malloc(k*sizeof(int*)));

j = (int)(malloc(sizeof(int)));

**j = k;

}

int main() {

int **v; int *q;
srand((unsigned int) time(NULL));

init2(&v, &q);

v[1] = q;

…

Dynamic allocation in init2
creates an array of
pointers for main program
variable v to point at, and
an int location for q to point
at; the value that q points
at is also initialized

Trace follows on next
slides

SCS

78

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

Before the call to init2:

v

q

?

?

Call stack

After declarations:

int **v;

int *q;

SCS

79

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

After the call to init2, but
before body is executed:

v

q

?

?

Call stack

Function prototype:

void init2(int *** t, int ** j);

Function call:

init2(&v, &q);
int**

int*

j

int**

t

int***

k ?

int

SCS

80

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

After execution of:

v

q ?

Call stack

int k = 3 + rand()%10;

// pretend that k is now 7

*t = (int**)(malloc(k*sizeof(int*)));

int**

int*

j

int**

t

int***

k 7

int

? ? ? ? ? ? ?

Heap

SCS

81

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

After execution of:

v

q

Call stack

j = (int)(malloc(sizeof(int)));

int**

int*

j

int**

t

int***

k 7

int

? ? ? ? ? ? ?

Heap

?

SCS

82

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

After execution of:
**j = k;7

? ? ? ?

7

v

q

Call stack

int**

int*

j

int**

t

int***

k 7

int

? ? ? ? ? ? ?

Heap

7

SCS

83

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

After returning to the main program, the call stack
information for init2 has been recycled

v

q

Call stack

int**

int*

? ? ? ? ? ? ?

Heap

7

SCS

84

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

And finally, after the execution of

v

q

Call stack

int**

int*

? ? ? ? ? ?

Heap

7

v[1] = q;

SCS

85

DAVV

hmehta.scs@dauniv.ac.in

Using const with Parameters

� Use const with parameters that aren’t pointers to indicate that the formal
parameter will not be altered inside the function

� const is used with a pointer parameter to indicate that the entity being
referenced will not be changed

SCS

86

DAVV

hmehta.scs@dauniv.ac.in

Using const with Parameters

void tryConst (const int k, const int *p) {

k++; /* compile time error generated */

(*p) = 83; /* compile time error generated – attempt to

change value from the calling module

that p points at */

p = (int*)(malloc(sizeof(int)));

}

No warning from the final line: the value from the calling
module that’s being referenced is not modified; however,
the function’s copy of the value’s address changes

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Pointers as Function Return Values

SCS

88

DAVV

hmehta.scs@dauniv.ac.in

Pointers as Return Values

� Functions can return pointers
� We can sometimes use this fact to reduce the complexity surrounding

dereferencing operations

SCS

89

DAVV

hmehta.scs@dauniv.ac.in

Example
#include <stdlib.h>

int * init3(int j) {

int *k, t;

k = (int*)malloc(j*sizeof(int));

for (t=0; t<j; t++)

k[t] = t;

return k;

}

int main() {

int *q;

q = init3(40);

…

The function init3
dynamically allocates an
array of int, initializes it,
and returns a reference to
it; in this case, the array
has the capacity to hold 40
integers

SCS

90

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

After the call to init3, but
before body is executed:

q ?

Call stack

Function prototype:

int * init3(int j);

Function call:

q = init3(40);

int*

j

int

t

int

k ?

int*

40 ?

SCS

91

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

q ?

Call stack

k = (int*)malloc(j*sizeof(int));

for (t=0; t<j; t++)

k[t] = t;

int*

j

int

t

int

k

int*

40 ?

After execution of:

Heap

0 1 2 3 39…

Value to be returned is in k

SCS

92

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

q

Call stack

int*

Heap

0 1 2 3 39…

After returning from init3, and after execution of the
assignment statement:

q = init3(40);

Portion of the call stack for the call to init3 has been recycled

SCS

93

DAVV

hmehta.scs@dauniv.ac.in

What Not to Do with Pointers

� Never let a function return a reference to a local variable within the function
� Never set a pointer parameter to the address of a local variable
� Reason: The temporary space in which local variables are stored is recycled

(reused) after the returning from the function, and the value being referenced
may be overwritten at the next function call

SCS

94

DAVV

hmehta.scs@dauniv.ac.in

Example#include <stdlib.h>

#include <time.h>

int ** init4(int ** size) {

int k, *arr;

k = (int) 5 + rand()%10;

arr = (int*)malloc(k*sizeof(int));

*size = &k; // Wrong

return &arr; // Wrong

}

int main() {

int ** vals, *numvals;

srand((unsigned int) time(NULL));
vals = init4(&numvals);

…

Local variables k and arr
exist only while init4 is
being executed

Values stored at those
locations will likely be
overwritten the next time
any function is called

Values of vals and
numvals (in main) would
therefore be destroyed

SCS

95

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d)

After the call to init4, but
before body is executed:

vals ?

Call stack

Function prototype:

int ** init4(int ** size);

Function call:

vals = init4(&numvals);

int**

arr

int*

size

int**

k ?

int

?

numvals

int*

?

SCS

96

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d) After execution of:

vals ?

Call stack

k = 5 + rand()%10;

// pretend k is now 8

arr = (int*)malloc(k*sizeof(int));

*size = &k; // Wrong

int**

arr

int*

size

int**

k 8

int

numvals

int*
? ? ? ? ? ? ? ?

Heap

Value to be returned is
address of arr

SCS

97

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d) Here’s what would
happen after return, on
completion of the
assignment statement:

vals

Call stack

vals = init4(&numvals);

int**

arr

int*

size

int**

k 8

int

numvals

int*
? ? ? ? ? ? ? ?

Heap

Value to be returned is
address of arr

SCS

98

DAVV

hmehta.scs@dauniv.ac.in

Example (cont’d) But, the portion of the
call stack for init4 is
recycled at this stage,
so vals and numvals
point at values that are
unstable (i.e.: likely to
change at any moment);
we’d lose the value 8
and the array’s address

vals

Call stack

int**

8

numvals

int*
? ? ? ? ? ? ? ?

Heap

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Pointer Arithmetic

SCS

100

DAVV

hmehta.scs@dauniv.ac.in

Pointer Arithmetic

� Pointers are really numeric memory addresses
� C allows programmers to perform arithmetic on pointers
� Most commonly used with arrays and strings, instead of indexing, but

can be used with any pointer
� We won’t use pointer arithmetic much, but you may need to understand

it to read text books and other people’s code

SCS

101

DAVV

hmehta.scs@dauniv.ac.in

Pointer Arithmetic

� When used with an int array a:
� a is a pointer to int, and points to a[0]
� a+1 points to array element a[1]
� a+2 points to array element a[2] , etc
� *(a+4) = 10; is equivalent to a[4] = 10;

� Can compare pointers using ==, !=, >, <=, etc

SCS

102

DAVV

hmehta.scs@dauniv.ac.in

Pointer Arithmetic

� More examples:

int a[10], *p, *q;

p = &a[2];

q = p + 3; /* q points to a[5] now */

p = q – 1; /* p points to a[4] now */

p++; /* p points to a[5] now */

p--; /* p points to a[4] now */

p = 123; / a[4] = 123 */

*q = *p; /* a[5] = a[4] */

q = p; /* q points to a[4] now */

SCS

103

DAVV

hmehta.scs@dauniv.ac.in

Pointer Arithmetic

� The difference between two pointers of the same type yields an int result

int a[10], *p, *q , i;

p = &a[2];

q = &a[5];

i = q - p; /* i is 3 */

i = p - q; /* i is –3 */

a[2] = 8; a[5] = 2;

i = *p - *q; /* i = a[2] – a[5] */

SCS

104

DAVV

hmehta.scs@dauniv.ac.in

Pointer Arithmetic
� Note that pointer arithmetic and int arithmetic are not, in general, the

same
� In our previous examples: on most computers, an int requires 4 bytes

(In Turbo C it is 2 Bytes) of storage
� Adding 1 to a pointer to int actually increments the address by 4, so

that it points at the next memory location beyond the current int
� Casting a pointer to the wrong type leads to pointer arithmetic errors

SCS

105

DAVV

hmehta.scs@dauniv.ac.in

Pointer Arithmetic
int a[10], *p, *q , i;

char s[25], *u, *v, k;

p = &a[2]; q = &a[5];

i = q - p; /* i is 3, but the difference between the two

addresses is 12: space for 3 ints */

q++; /* address in q actually goes up by 4 bytes */

u = &s[6]; v = &s[12];

i = v – u; /* i is 6, and the difference between the two

addresses is 6, because a char requires

only 1 byte of storage */

u++; /* u = &s[7]; address in u goes up 1 byte */

SCS

106

DAVV

hmehta.scs@dauniv.ac.in

Example

Write a function myStrLen that is equivalent to strlen
from <string.h>

size_t myStrLen(const char * s) {

size_t count = 0;

while (*s != ‘\0’) {

count++;

s++;

}

return count;

}

We can change
the pointer s, but
not the string it
points at

SCS

107

DAVV

hmehta.scs@dauniv.ac.in

Strings in C

� No explicit string type in C; strings are simply arrays of characters that
are subject to a few special conventions

� Example: char s [10]; declares a 10-element array that can hold a
character string of up to 9 characters

� Convention: Use the null character '\0' to terminate all strings

SCS

108

DAVV

hmehta.scs@dauniv.ac.in

Strings in C

� C does not know where an array ends at run time – no boundary
checking

� All C library functions that use strings depend on the null character being
stored so that the end of the string can be detected

� Example: char str [10] = {'u', 'n', 'i', 'x', '\0'};
� Length of str is 4 (not 5, and not the declared size of the array)

SCS

109

DAVV

hmehta.scs@dauniv.ac.in

Accessing Individual Characters

� Use indexing, just as for any other kind of array:
char s[10];
s[0] = 'h';
s[1] = 'i’;
s[2] = '!';
s[3] = '\0';

� Use single quotes with char literals, and double quotes with string literals

SCS

110

DAVV

hmehta.scs@dauniv.ac.in

String Literals

� Example: printf("Long long ago.");
� Other ways to initialize a string:

char s[10]="unix"; /* s[4] is automatically set to '\0’;
s can hold up to ten chars,
including ‘\0’ */

char s[]="unix"; /* s has five elements: enough to
hold the 4-character string plus
the null character */

SCS

111

DAVV

hmehta.scs@dauniv.ac.in

Printing Strings with printf ()

char str[] = "A message to display";
printf ("%s\n", str);

� printf expects to receive a string parameter when it sees %s in the format
string
� Can be from a character array
� Can be another literal string
� Can be from a character pointer (more on this later)

SCS

112

DAVV

hmehta.scs@dauniv.ac.in

Printing Strings with printf ()

� When printf encounters the format specifier %s, it prints characters from
the corresponding string, up until the null character is reached

� The null character itself is not printed
� If no null character is encountered, printing will continue beyond the

array boundary until either one is found, or a memory access violation
occurs

SCS

113

DAVV

hmehta.scs@dauniv.ac.in

Example

char str[11]="unix and c";

printf("%s\n", str);
str[6]='\0';
printf("%s\n", str);
printf(str); printf("\n");
str[2]='%';
str[3]= ‘s';
printf(str,str);
printf("\n");

What output does this
code segment produce?

SCS

114

DAVV

hmehta.scs@dauniv.ac.in

Printing with puts()

� The puts function is much simpler than printf for
printing strings

� Prototype of puts is defined in stdio.h:
int puts(const char * str);

� More efficient than printf: the program doesn't need to
analyze the format string at run-time

Use of const in
this context
indicates that the
function will not
modify the string
parameter

SCS

115

DAVV

hmehta.scs@dauniv.ac.in

Printing with puts()

�Example:
char sentence[] = "The quick brown fox\n";
puts(sentence);

�Prints out two lines:
The quick brown fox

this blank line is part of the output

�puts adds a newline ‘\n’ character following the string

SCS

116

DAVV

hmehta.scs@dauniv.ac.in

Inputting Strings with gets()

� gets() gets a line from standard input
� The prototype is defined in stdio.h:

char *gets(char *str);
�str is a pointer to the space where gets will store the line, or a

character array
�Returns NULL (the null pointer) upon failure. Otherwise, it returns

str
�Note the additional meaning for operator *

SCS

117

DAVV

hmehta.scs@dauniv.ac.in

Inputting Strings with gets()

� Example:
char your_line[100];
printf("Enter a line:\n");
gets(your_line);
puts("Your input follows:\n");
puts(your_line);

�Newline character is not stored, but the null character is
�Make sure the array is big enough to hold the line being

read; otherwise, input will overflow into other areas of
memory

SCS

118

DAVV

hmehta.scs@dauniv.ac.in

Inputting Strings with scanf()

� To read a string include:
�%s scans up to but not including the next white space character
�%ns scans the next n characters or up to the next white space

character, whichever comes first
� Example:

/* Assume s1, s2 and s3 are char arrays */
scanf ("%s%s%s", s1, s2, s3);
scanf ("%5s%5s%5s", s1, s2, s3);

SCS

119

DAVV

hmehta.scs@dauniv.ac.in

Inputting Strings with scanf()

� Note: No address operator (&) is used with the actual parameter when
inputting strings into character arrays: the array name is an address
already

� Difference between gets() and scanf():
� gets() read an entire line
� scanf("%s",…) reads only up to the next whitespace character

SCS

120

DAVV

hmehta.scs@dauniv.ac.in

Example

#include <stdio.h>
int main ()
{

char lname[81], fname[81];
int count, age;
puts ("Enter the last name, first name, and age, separated");
puts ("by spaces; then press Enter \n");
count = scanf ("%s%s%d", lname, fname, &age);
printf ("%d items entered: %s %s %d\n",

count, fname, lname, age);
return 0;

}

SCS

121

DAVV

hmehta.scs@dauniv.ac.in

The C String Library

� String functions are provided in an ANSI standard string library
� Access this through its header file:

#include <string.h>
� Includes functions to perform tasks such as:

� Computing length of string
� Copying strings
� Concatenating strings
� Searching for a sub string or characters

� This library is guaranteed to be there in any ANSI standard implementation of C

SCS

122

DAVV

hmehta.scs@dauniv.ac.in

Functions from string.h

� strlen returns the length of a NULL terminated character string:
size_t strlen (const char * str) ;

� size_t: a type defined in string.h that is equivalent to an unsigned int
� char *str: points to a series of characters or is a character array ending with '\0'

� What’s wrong with:
char a[5]={‘a’, ’b’, ’c’, ’d’, ’e’}; strlen(a);

SCS

123

DAVV

hmehta.scs@dauniv.ac.in

Functions from string.h
� strcpy makes a copy of a string:

char *strcpy (char * destination, const char * source);
� A copy of the string at address source is made at destination

� String at source should be null-terminated
� destination should point to enough room

(at least enough to hold the string at source)
� The return value is the address of the copied string (that is, destination)

SCS

124

DAVV

hmehta.scs@dauniv.ac.in

Functions from string.h

� strcat concatenates strings:
char * strcat (char * str1, const char * str2);

�Appends a copy of str2 to the end of str1
�The result string is null-terminated
�str2 is not modified
�A pointer equal to str1 is returned

� Programmer must ensure that str1 has sufficient space to hold the
concatenated string

SCS

125

DAVV

hmehta.scs@dauniv.ac.in

Example

#include <string.h>
#include <stdio.h>
int main()
{

char str1[27] = "abc";
char str2[100];
printf("%d\n",strlen(str1));
strcpy(str2,str1);
puts(str2);
puts("\n");
strcat(str2,str1);
puts(str2);

}

Show the output

SCS

126

DAVV

hmehta.scs@dauniv.ac.in

Functions from string.h

� strcmp compares strings for equality or inequality:
int strcmp (const char *str1, const char *str2);

� Returns an int whose value is interpreted as follows:
< 0 : str1 is less than str2

0 : str1 is equal to str2
> 0 : str1 is greater than str2

SCS

127

DAVV

hmehta.scs@dauniv.ac.in

Functions from string.h

� strcmp compares the strings one char at a time until a difference is
found; return value is (the ASCII ordinal value of the char from str1)
minus (the ASCII ordinal value of the char from str2)

� If both strings reach a '\0' at the same time, they are considered equal,
and return value is zero

SCS

128

DAVV

hmehta.scs@dauniv.ac.in

Functions from string.h

� Other string comparison functions:
int strncmp (const char *str1,

const char * str2, size_t n);
�Compares at most n chars of str1 and str2
�Continues until a difference is found in the first n chars, or n

chars have been compared without detecting a difference,
or the end of str1 or str2 is encountered

SCS

129

DAVV

hmehta.scs@dauniv.ac.in

Functions from string.h

� strcasecmp() and strncasecmp(): same as strcmp() and
strncmp(), except that differences between upper and
lower case letters are ignored

SCS

130

DAVV

hmehta.scs@dauniv.ac.in

Functions from string.h

#include <string.h>
int main()
{

char str1[] = "The first string.";
char str2[] = "The second string.";
printf("%d\n", strncmp(str1, str2, 4));
printf("%d\n", strncmp(str1, str2, 7));

}

Show the output

SCS

131

DAVV

hmehta.scs@dauniv.ac.in

Functions from string.h

�strchr: Find the first occurrence of a specified
character in a string:
char * strchr (const char * str, int ch) ;

�Search the string referenced by str from its
beginning, until either an occurrence of ch is
found or the end of the string (‘\0’) is reached

�Return a pointer to the first occurrence of ch
in the string; if no occurrence is found, return
the NULL pointer instead

SCS

132

DAVV

hmehta.scs@dauniv.ac.in

Functions from string.h

�Value returned by strchr can be used to
determine the position (index) of the character in
the string:
�Subtract the start address of the string from

the value returned by strchr
�This is pointer arithmetic: the result is offset

of the character, in terms of char locations,
from the beginning of the string

�Will work even if sizeof(char) is not 1

SCS

133

DAVV

hmehta.scs@dauniv.ac.in

Functions from string.h
#include<stdio.h>
#include<string.h>
int main()
{

char ch='b', buf[80];
strcpy(buf, "The quick brown fox");
if (strchr(buf,ch) == NULL)

printf ("The character %c was not found.\n",ch);
else

printf ("The character %c was found at position %d\n",
ch, strchr(buf,ch)-buf+1);

}

‘b’ is the 11th character in buf; in fact, it is stored in buf[10]

SCS

134

DAVV

hmehta.scs@dauniv.ac.in

Functions from string.h

�strstr searches for the first occurrence of one string inside
another:
char * strstr (const char * str,

char * query) ;
� If found, a pointer to the first occurrence of query

inside str is returned; otherwise the NULL pointer is
returned

SCS

135

DAVV

hmehta.scs@dauniv.ac.in

Functions from stdio.h

� sprintf behaves like printf, except that, instead of sending a
formatted stream of characters to standard output, it stores the
characters in a string
int sprintf(char *s, const char *format, …);

� Result is stored in the string referenced by s
� Useful in formatting a string, and in converting int or float values to

strings
� sscanf works like scanf, but takes its input from a string

SCS

136

DAVV

hmehta.scs@dauniv.ac.in

Functions from string.h and stdio.h

#include <stdio.h>
#include <string.h>
int main()
{

char result[100];
sprintf(result, "%f", (float)17/37);
if (strstr(result, "45") != NULL)
printf("The digit sequence 45 is in 17 divided by 37. \n");

return 0;
}

SCS

137

DAVV

hmehta.scs@dauniv.ac.in

Functions from stdlib.h

� atoi: takes a character string and converts it to an integer
int atoi (const char *ptr);

� Ignores leading white space in the string
�Then expects either + or – or a digit
�No white space allowed between the sign and the first digit
�Converts digit by digit until a non-digit (or the end of the

string) is encountered

SCS

138

DAVV

hmehta.scs@dauniv.ac.in

Functions from stdlib.h

� Examples using atoi :
string s atoi(s)
“394” 394

“157 66” 157
“-1.6” -1
“ +50x” 50
“twelve” 0
“x506” 0
“ - 409” 0

SCS

139

DAVV

hmehta.scs@dauniv.ac.in

Functions from stdlib.h
long atol (const char *ptr) ;

� like atoi, but returns a long
double atof (const char * str);

�Like atoi, but for real values
�Handles a decimal point, and an exponent indicator (e or E)

followed by an integer exponent
� string s atof(s)

“12-6” 12.000000
“ -0.123.456” -0.123000
“123E+3” 123000.000000
“123.1e-5” 0.001231

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Variable Number of Arguments/Parameters

SCS

141

DAVV

hmehta.scs@dauniv.ac.in

Variable-Length Argument Lists

� Functions with unspecified number of arguments
�Load <stdarg.h>
�Use ellipsis(...) at end of parameter list
�Need at least one defined parameter
�Example:

double myfunction (int i, ...);

�The ellipsis is only used in the prototype of a function with a variable
length argument list

�printf is an example of a function that can take multiple arguments
�The prototype of printf is defined as

int printf(const char* format, ...);

SCS

142

DAVV

hmehta.scs@dauniv.ac.in

Variable-Length Argument Lists

� Macros and definitions of the variable arguments header (stdarg.h)
�va_list

�Type specifier, required (va_list arguments;)
�va_start(arguments, other variables)

�Intializes parameters, required before use
�va_arg(arguments, type)

�Returns a parameter each time va_arg is called
�Automatically points to next parameter

�va_end(arguments)
�Helps function have a normal return

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Command Line Arguments/Parameters

SCS

144

DAVV

hmehta.scs@dauniv.ac.in

Passing Parameters to C

� Often a user wants to pass parameters into the program from
the command prompt

:\tc\bin>progname arg1 arg2 arg3
� This is accomplished in C using argc and argv

int main (int argc, char *argv[]) {
/* Statements go here */

}

Number of arguments, which
includes the name of the executable

Array of strings of length argc,
with one argument per location

SCS

145

DAVV

hmehta.scs@dauniv.ac.in

Passing Parameters to C
#include <stdio.h>
int main(int argc, char *argv[])
{

int count;
printf ("Program name: %s\n", argv [0]);
if (argc > 1)
{

for (count=1; count<argc; count++)
printf ("Argument %d: %s\n",count,argv[count]);

}
else

puts ("No command line arguments entered.");
return 0;

}

SCS

146

DAVV

hmehta.scs@dauniv.ac.in

Passing Parameters to C

� Suppose we compiled the previous program to the executable file
myargs

C:\tc\bin>myargs first "second arg" 3 4 > myargs.out

� myargs.out contains the following lines:

Program name: myargs
Argument 1: first
Argument 2: second arg
Argument 3: 3
Argument 4: 4

SCS

147

DAVV

hmehta.scs@dauniv.ac.in

Passing Parameters to C

� C program should check the command line arguments for validity:
�Are there the right number of arguments?
�Are numeric arguments in the expected range of acceptable values?
� If an argument is an input or output file, can it be opened

successfully?
� Issue an error message and abort execution if arguments are

incorrect

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Compiler Directives

SCS

149

DAVV

hmehta.scs@dauniv.ac.in

The C Preprocessor

� The C preprocessor is invoked by the compilation command before compiling
begins

� Changes your source code based on instructions called preprocessor
directives that are embedded in the source code

� The preprocessor creates a new version of your program and it is this new
program that actually gets compiled

SCS

150

DAVV

hmehta.scs@dauniv.ac.in

The C Preprocessor

� Normally, you do not see these new versions on the hard disk, as they
are deleted after compilation

� You can force the compiler to keep them to see the results
� Each preprocessor directive appears in the source code preceded by a

‘#’ sign

SCS

151

DAVV

hmehta.scs@dauniv.ac.in

The #define Directive

� Simple substitution macros
#define text1 text2

� This tells the compiler to find all occurrences of “text1” in the source code and
substitute “text2”

� Usually used for constants:
#define MAX 1000

� Generally use upper case letters (by convention)
� Always separate using white space
� No trailing semi-colon

SCS

152

DAVV

hmehta.scs@dauniv.ac.in

The #define Directive

#include <stdio.h>
#define PI 3.1416
#define PRINT printf
int main()
{

PRINT(“Approximate value of pi: %f”, PI);
return 0;

}

SCS

153

DAVV

hmehta.scs@dauniv.ac.in

Function Macros

� You can also define function macros:
#define MAX(A,B) ((a) > (b) ? (a) : (b))
……
printf("%d", 2 * MAX(3+3, 7)); /* is equivalent to */
printf("%d", 2 * ((3+3) > (7) ? (3+3) : (7));

� The parentheses are important:
#define MAX(A,B) a>b?a:b
printf("%d", 2 * MAX(3+3, 7)); /*is equivalent to */
printf("%d", 2 * 3+3 > 7 ? 3+3 : 7);

SCS

154

DAVV

hmehta.scs@dauniv.ac.in

Function Macros Should be Used with Care

#define MAX(X,Y) ((x)>(y)?(x):(y))
……
int n, i=4, j=3;
n= MAX(i++, j); /* Same as n= ((i++)>(j)?(i++):(j)) */
printf("%d,%d,%d", n, i, j);

� The output is: 5, 6, 3
� If MAX was a function, the output would have been: 4, 5, 3

SCS

155

DAVV

hmehta.scs@dauniv.ac.in

Conditional Compilation

� The pre-processor directives #if, #elif, #else, and #endif tell the compiler if the
enclosed source code should be compiled

� Structure:
#if condition_1

statement_block_1
#elif condition_2

statement_block_2
...
#elif condition_n

statement_block_n
#else

default_statement_block
#endif

Any constant expression
• If true (non-zero), compile
statement_block_1
• If false (zero), don't compile
statement_block_1

SCS

156

DAVV

hmehta.scs@dauniv.ac.in

Conditional Compilation
� For the most part, the only things that can be tested are the things that

have been defined by #define statements

#define ENGLAND 0
#define FRANCE 1
#define ITALY 0
#if ENGLAND

#include "england.h"
#elif FRANCE

#include "france.h"
#elif ITALY

#include "italy.h"
#else

#include "canada.h"
#endif

SCS

157

DAVV

hmehta.scs@dauniv.ac.in

Conditional Compilation

� Conditional compilation can also be very useful for including debugging code
� When you are debugging your code you may wish to print out some

information during the running of your program
� You may not need want this extra output when you release your program;

you’d need to go back through your code to delete the statements

SCS

158

DAVV

hmehta.scs@dauniv.ac.in

Conditional Compilation

� Instead, you can use #if … #endif to save time:
#define DEBUG 1
……
#if DEBUG

printf("Debug reporting at function my_sort()!\n");
#endif
……

� Change DEBUG to zero and recompile to suppress the debugging
output

SCS

159

DAVV

hmehta.scs@dauniv.ac.in

Conditional Compilation

� We can use a preprocessor function as the condition of
compilation:

defined (NAME)
�Returns true if NAME has been defined; else false

� Example:
#define DEBUG
#if defined (DEBUG)

printf("debug report at function my_sort() \n");
#endif

SCS

160

DAVV

hmehta.scs@dauniv.ac.in

Conditional Compilation
� Note: Value of the defined function depends only on whether

the name DEBUG has been defined
� It has nothing to do with which value (if any) DEBUG is

defined to; in fact, we don’t have to provide a value at all
� Can use the notation #ifdef NAME instead
� We also have #ifndef (if not defined)

SCS

161

DAVV

hmehta.scs@dauniv.ac.in

Conditional Compilation

� The #undef … directive makes sure that defined(…) evaluates to false.
� Example: Suppose that, for the first part of a source file, you want

DEBUG to be defined, and for the last part, you want DEBUG to be
undefined

SCS

162

DAVV

hmehta.scs@dauniv.ac.in

Conditional Compilation

� A directive can also be set on the Unix/DOS command line at compile
time:

tcc/cc –DDEBUG myprog.c
�Compiles myprog.c with the symbol DEBUG defined

as if #define DEBUG was in written at the top of
myprog.c

SCS

163

DAVV

hmehta.scs@dauniv.ac.in

The #include Directive
� Causes all of the code in the included file to be inserted at the point in

the text where #include appears
� Included files can contain other #include directives; usually limited to 10

levels of nesting
� < > tells the compiler to look in the standard include directories
� " " tells the compiler to first find it in current folder than in include

directory

SCS

164

DAVV

hmehta.scs@dauniv.ac.in

The #include Directive

� In large programs, some .h files may be #included several times – could lead to
multiple definition errors

� To avoid this problem, surround contents of the .h file with
#ifndef unique_identifier_name
define unique_identifier_name
/* contents of .h file belong here */
#endif

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Structures and Union

SCS

166

DAVV

hmehta.scs@dauniv.ac.in

Structures in C

� Structures are used in C to group together related data into a composite
variable. This technique has several advantages:
� It clarifies the code by showing that the data defined in the structure

are intimately related.
� It simplifies passing the data to functions. Instead of passing multiple

variables separately, they can be passed as a single unit.

SCS

167

DAVV

hmehta.scs@dauniv.ac.in

Structures

� Structure: C’s way of grouping a collection of data into a single
manageable unit

� Defining a structure type:
struct coord {

int x ;
int y ;

};
�This defines a new type struct coord; no variable is actually declared

or generated

SCS

168

DAVV

hmehta.scs@dauniv.ac.in

Structures

�To define struct variables:
struct coord {

int x,y ;
} first, second;

�Another approach:
struct coord {

int x,y ;
};

...............
struct coord first, second;
struct coord third;

Defines the
structured type struct
coord and statically
allocates space for
two structures, first
and second; the
structures are not
initialized

Just defines the
structured type

Statically allocated
variables are
declared here

SCS

169

DAVV

hmehta.scs@dauniv.ac.in

Structures

� You can use a typedef if you want to avoid two-word type names such as
struct coord:

typedef struct coord coordinate;
coordinate first, second;

� In some compilers, and all C++ compilers, you can usually simply say
just:

coord first, second;

SCS

170

DAVV

hmehta.scs@dauniv.ac.in

Structures
� Type definition can also be written as:

typedef struct coord {
int x,y ;

} coordinate;
� In general, it’s best to separate the type definition from

the declaration of variables

SCS

171

DAVV

hmehta.scs@dauniv.ac.in

Structures

� Access structure members by the dot (.) operator
� Generic form:

structure_var.member_name
� For example:

coordinate pair1, pair2;
pair1.x = 50 ;
pair2.y = 100;

SCS

172

DAVV

hmehta.scs@dauniv.ac.in

Structures

� struct_var.member_name can be used anywhere a variable can be
used:
� printf ("%d , %d", second.x , second.y);
� scanf("%d, %d", &first.x, &first.y);

SCS

173

DAVV

hmehta.scs@dauniv.ac.in

Structures

� Can copy entire structures using =
pair1 = pair2;

performs the same task as:
pair1.x = pair2.x ;
pair1.y = pair2.y ;

SCS

174

DAVV

hmehta.scs@dauniv.ac.in

Memory alignment/ Structure Padding

� Compiler inserts unused bytes into the structure to align the memory on a
word boundary.

� Different C compilers may give different offsets to the elements.

SCS

175

DAVV

hmehta.scs@dauniv.ac.in

Structures Containing Structures

�Structures can have other structures as members:
�To define rectangle in terms of coordinate:

typedef struct rect {
coordinate topleft;
coordinate bottomright;

} rectangle;

? ? ? ?
xx yy

topleft bottomright

Rectangle blueprint

SCS

176

DAVV

hmehta.scs@dauniv.ac.in

Structures Containing Structures

�To initialize the points describing a rectangle:
struct rect mybox ;
mybox.topleft.x = 0 ;
mybox.topleft.y = 10 ;
mybox.bottomright.x = 100 ;
mybox.bottomright.y = 200 ;

0 10 100 200
xx yy

topleft bottomright

struct rect

SCS

177

DAVV

hmehta.scs@dauniv.ac.in

Example

#include <stdio.h>
typedef struct coord {

int x;
int y;

}coordinate;
typedef struct rect {

coordinate topleft;
coordinate bottomright;

}rectangle;

int main ()
{

int length, width;
long area;
rectangle mybox;
mybox.topleft.x = 0;
mybox.topleft.y = 0;
mybox.bottomright.x = 100;
mybox.bottomright.y = 50;
width = mybox.bottomright.x –

mybox.topleft.x;
length = mybox.bottomright.y –

mybox.topleft.y;
area = width * length;
printf (“Area is %ld units.\n", area);

}

SCS

178

DAVV

hmehta.scs@dauniv.ac.in

Structures Containing Arrays
� Arrays within structures are the same as any other member

element
� Example:

struct record {
float x;
char y [5] ;

} ;

float char[5]

record

SCS

179

DAVV

hmehta.scs@dauniv.ac.in

Example #include <stdio.h>
struct data
{

float amount;
char fname[30];
char lname[30];

} rec;
int main () {

struct data rec;
printf ("Enter the donor's first and last names, \n");
printf ("separated by a space: ");
scanf ("%s %s", rec.fname, rec.lname);
printf ("\nEnter the donation amount: ");
scanf ("%f", &rec.amount);
printf ("\nDonor %s %s gave $%.2f.\n",

rec.fname,rec.lname,rec.amount);
}

SCS

180

DAVV

hmehta.scs@dauniv.ac.in

Arrays of Structures

�Example:
struct entry {

char fname [10] ;
char lname [12] ;
char phone [8] ;

} ;
struct entry list [1000];

�Possible assignments:
list [1] = list [6];
strcpy (list[1].phone, list[6].phone);
list[6].phone[1] = list[3].phone[4] ;

This creates an
array of 1000
structures of type
struct entry

SCS

181

DAVV

hmehta.scs@dauniv.ac.in

Example

#include <stdio.h>
struct entry {

char fname [20];
char lname [20];
char phone [10];

} ;

int main() {
struct entry list[4];
int i;
for (i=0; i < 4; i++) {

printf ("\nEnter first name: ");
scanf ("%s", list[i].fname);
printf ("Enter last name: ");
scanf ("%s", list[i].lname);
printf ("Enter phone in 123-4567 format: ");
scanf ("%s", list[i].phone);

}
printf ("\n\n");
for (i=0; i < 4; i++) {

printf ("Name: %s %s", list[i].fname,
list[i].lname);
printf ("\t\tPhone: %s\n", list[i].phone);

}
}

SCS

182

DAVV

hmehta.scs@dauniv.ac.in

Initializing Structures

struct sale {
char customer [20] ;
char item [20] ;
int amount ;

};
struct sale mysale = { "Acme Industries",

"Zorgle blaster",
1000 } ;

• Example:

SCS

183

DAVV

hmehta.scs@dauniv.ac.in

Initializing Structures

� Example: Structures within structures:

struct customer {
char firm [20] ;
char contact [25] ;

};
struct sale {

struct customer buyer ;
char item [20] ;
int amount ;

} mysale =
{ { "Acme Industries", "George Adams"} ,

"Zorgle Blaster", 1000
} ;

SCS

184

DAVV

hmehta.scs@dauniv.ac.in

Initializing Structures

struct customer {
char firm [20] ;
char contact [25] ;

} ;
struct sale {

struct customer buyer ;
char item [20] ;
int amount ;

} ;

struct saley1990 [100] = {
{ { "Acme Industries",
"George Adams"} ,
“Widget" , 1000
},
{ { "Wilson & Co.",

"Ed Wilson"} ,
"Thingamabob" , 290
}

} ;

• Example: Arrays of structures

SCS

185

DAVV

hmehta.scs@dauniv.ac.in

Pointers to Structures

struct part {
float price ;
char name [10] ;

} ;
struct part *p , thing;
p = &thing;
/* The following two statements are equivalent */
thing.price = 50;
(*p).price = 50; /* () around *p is needed */

SCS

186

DAVV

hmehta.scs@dauniv.ac.in

Pointers to Structures

� p is set to point to the first byte of the struct variable

thing.price thing.name []

p

SCS

187

DAVV

hmehta.scs@dauniv.ac.in

Pointers to Structures

�When we have a pointer to a structure, we must
dereference the pointer before attempting to access
the structure’s members

�The membership (dot) operator has a higher
precedence than the dereferencing operator

struct part *p , thing;
p = &thing;
(*p).price = 50; Parentheses around *p are necessary

SCS

188

DAVV

hmehta.scs@dauniv.ac.in

Pointers to Structures

�C provides an operator -> that combines the
dereferencing and membership operations
into one, performed in the proper order

�Easier form to read (and to type) when
compared with the two separate operators
struct part *p , thing;
p = &thing;
p->price = 50; /*equivalent to (*p).price = 50; and

thing.price = 50; and (&thing)->price = 50;*/

SCS

189

DAVV

hmehta.scs@dauniv.ac.in

Pointers to Structures

struct part * p, *q;
p = (struct part *) malloc(sizeof(struct part));
q = (struct part *) malloc(sizeof(struct part));
p -> price = 199.99 ;
strcpy(p -> name, "hard disk");
(*q) = (*p);
q = p;
free(p);
free(q); /* This statement causes a problem.

Why? */

SCS

190

DAVV

hmehta.scs@dauniv.ac.in

Pointers to Structures

�You can allocate a structure array as well:
struct part *ptr;
ptr = (struct part *) malloc(10*sizeof(struct part));
for(i=0; i< 10; i++)
{

ptr[i].price = 10.0 * i;
sprintf(ptr[i].name, "part %d", i);

}
……
free(ptr);

}

SCS

191

DAVV

hmehta.scs@dauniv.ac.in

Pointers to Structures

� You can use pointer arithmetic to access the elements of
the array:

{
struct part *ptr, *p;
ptr = (struct part *) malloc(10 * sizeof(struct part));
for(i=0, p=ptr; i< 10; i++, p++)
{

p -> price = 10.0 * i;
sprintf(p -> name, "part %d", i);

}
……
free(ptr);

}

SCS

192

DAVV

hmehta.scs@dauniv.ac.in

Pointer as Structure Member
struct node{

int data;
struct node *next;

} a,b,c;

NULL
a b c

? ? ?

struct node a,b,c;
a.next = &b;
b.next = &c;
c.next = NULL;

?

a b c

? ? ?? ?

SCS

193

DAVV

hmehta.scs@dauniv.ac.in

Pointer as Structure Member

a b c

a.data = 1;
a.next->data = 2;
/* or b.data = 2; or (*(a.next)).data = 2 */
a.next->next->data = 3;
/* or c.data = 3; or (*(a.next)).next->data = 3;

or (* (*(a.next)).next).data = 3; or (*(a.next->next)).data = 3; */
c.next = (struct node *) malloc(sizeof(struct node));

1 2 3

?Only this node has
been dynamically
allocated

?

SCS

194

DAVV

hmehta.scs@dauniv.ac.in

Assignment Operator vs. memcpy

/* This copies one struct into
another */

#include<string.h>
{

struct part a,b;
b.price = 39.99;
strcpy(b.name,"floppy“);
a = b;

}

/* Equivalently, you can use memcpy */
#include <string.h>
{

struct part a,b;
b.price = 39.99;
strcpy(b.name,"floppy“);
memcpy(&a,&b,sizeof(part));

}

SCS

195

DAVV

hmehta.scs@dauniv.ac.in

Array Member vs. Pointer Member

struct book {
float price;
char name[50];

};
int main()
{

struct book a,b;
b.price = 19.99;
strcpy(b.name,

"C handbook");
/* continued… */

price

name

19.99

C handbook

b

price

name

?

??????????

a

SCS

196

DAVV

hmehta.scs@dauniv.ac.in

Array Member vs. Pointer Member

/* …continued… */
a = b;

/* …continued… */
strcpy(b.name,

"Unix handbook");
/*… rest of program */

price

name

19.99

C handbook

b

price

name

19.99

C handbook

a

price

name

19.99

Unix handbook

price

name

19.99

C handbook

b a

SCS

197

DAVV

hmehta.scs@dauniv.ac.in

Array Member vs. Pointer Member

struct book {
float price;
char *name;

};
int main()
{

struct book a,b;
b.price = 19.99;
b.name = (char *)
malloc(50);
strcpy(b.name,
“C handbook”);

/* continued… */

price

name

19.99

b

price

name

?

a

?

C handbook

SCS

198

DAVV

hmehta.scs@dauniv.ac.in

Array Member vs. Pointer Member

/* … continued… */
a = b;

/* … continued… */
price

name

19.99

b

price

name

19.99

a

C handbook

Values of the struct’s
members were copied
here; the string lies
outside the structure,
and was not copied

SCS

199

DAVV

hmehta.scs@dauniv.ac.in

Array Member vs. Pointer Member

/* … continued… */
strcpy(b.name,
"Unix handbook");

/* …rest of program */

price

name

19.99

b

price

name

19.99

a

Unix handbookThis isn’t likely what we
wanted to happen here

SCS

200

DAVV

hmehta.scs@dauniv.ac.in

strdup() from <string.h>

� General form:
char * strdup (const char * source);

� strdup() makes a dynamically allocated copy of a string at source, and
returns a pointer to it; returns NULL instead if a copy can’t be made

� Size of the new string is strlen(source)

SCS

201

DAVV

hmehta.scs@dauniv.ac.in

strdup() from <string.h>

� Instead of the calls to
malloc() and strcpy(), we
can use
b.name = strdup(“C handbook”);

�Only difference: b.name will
have the capacity to store
only 10 chars plus the null
character, rather than the 50
chars it held in the original
codeSize of the new string is
strlen(source)

/* from earlier example */
struct book {

float price;
char *name;

};
int main()
{

struct book a,b;
b.price = 19.99;
b.name = (char *) malloc(50);
strcpy(b.name,

“C handbook”);

SCS

202

DAVV

hmehta.scs@dauniv.ac.in

Passing Structures to Functions

� Structures are passed by value to functions
� The formal parameter variable will be a copy of the actual parameter in

the call
� Copying can be inefficient if the structure is big
� It is usually more efficient to pass a pointer to the struct

SCS

203

DAVV

hmehta.scs@dauniv.ac.in

Structures as Return Values

� A function can have a struct as its return value
� It may in general be more efficient to have a function return a pointer to a

struct, but be careful:
�Don’t return a pointer to a local variable
� It’s fine to return a pointer to a dynamically allocated structure

SCS

204

DAVV

hmehta.scs@dauniv.ac.in

Passing Structures to Functions
#include<stdio.h>
struct pairInt {

int min, max;
};
struct pairInt min_max(int x,int y)
{

struct pairInt pair;
pair.min = (x > y) ? y : x;
pair.max = (x > y) ? x : y;
return pairInt;

}
int main(){

struct pairInt result;
result = min_max(3, 5);
printf("%d<=%d", result.min, result.max);

}

SCS

205

DAVV

hmehta.scs@dauniv.ac.in

Passing Structures to Functions

#include<stdio.h>
struct book {

float price;
char abstract[5000];

};
void print_abstract(struct book

*p_book)
{

puts(p_book->abstract);
};

SCS

206

DAVV

hmehta.scs@dauniv.ac.in

Unions
� union

�Memory that contains a variety of objects over time
�Only contains one data member at a time
�Members of a union share space
�Conserves storage
�Only the last data member defined can be accessed

� union declarations
�Same as struct

union Number {

int x;

float y;

};

union Number value;

SCS

207

DAVV

hmehta.scs@dauniv.ac.in

Unions

� Valid union operations
�Assignment to union of same type: =
�Taking address: &
�Accessing union members: .
�Accessing members using pointers: ->

SCS

208

DAVV

hmehta.scs@dauniv.ac.in

Big and Little Endian Representations

� Endianness refers to the order that the individual bytes (not bits) of a multibyte
data element is stored in memory.

� Big endian is the most straightforward method. It stores the most significant byte
first, then the next significant byte and so on.

� Little endian stores the bytes in the opposite order (least significant first).
� The x86 family of processors use little endian representation.

SCS

209

DAVV

hmehta.scs@dauniv.ac.in

How to Determine Endianness

unsigned short word = 0x1234; /* assumes sizeof (short) == 2 */
unsigned char p = (unsigned char) &word;
if (p[0] == 0x12)

printf (”Big Endian Machine\n”);
else

printf (” Little Endian Machine\n”);

SCS

210

DAVV

hmehta.scs@dauniv.ac.in

When to Care About Little and Big Endian

� For typical programming, the endianness of the CPU is not
significant.

� The most common time that it is important is when binary data is
transferred between different computer systems.

� Since ASCII data is single byte, endianness is not an issue for it.

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Bitwise operator and Bit fields

SCS

212

DAVV

hmehta.scs@dauniv.ac.in

Bit Fields

� Bit fields allow one to specify members of a struct that only use a
specified number of bits. The size of bits does not have to be a multiple
of eight.

� A bit field member is defined like an unsigned int or int member with a
colon and bit size appended to it.

SCS

213

DAVV

hmehta.scs@dauniv.ac.in

An example of bitfield

The first bitfield is assigned to the least significant bits of its word

SCS

214

DAVV

hmehta.scs@dauniv.ac.in

Bitwise Operators
� All data represented internally as sequences of bits

�Each bit can be either 0 or 1
�Sequence of 8 bits forms a byte

All 0 bits are set to 1 and all 1 bits are set to 0. One’s complement~

Shifts the bits of the first operand right by the number
of bits specified by the second operand; the method
of filling from the left is machine dependent.

right shift>>

Shifts the bits of the first operand left by the number
of bits specified by the second operand; fill from right
with 0 bits.

left shift<<

The bits in the result are set to 1 if exactly one of the
corresponding bits in the two operands is 1.

bitwise exclusive OR^

The bits in the result are set to 1 if at least one of the
corresponding bits in the two operands is 1.

bitwise OR|

The bits in the result are set to 1 if the corresponding
bits in the two operands are both 1.

bitwise AND&

DescriptionNameOperator

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Files in C

SCS

216

DAVV

hmehta.scs@dauniv.ac.in

FILE *
� C uses the FILE* data type to access files
� FILE is defined in <stdio.h>

#include <stdio.h>
int main()
{

FILE * fp;
fp = fopen("tmp.txt", "w");
fprintf(fp,"This is a test\n");
fclose(fp);
return 0;

}

SCS

217

DAVV

hmehta.scs@dauniv.ac.in

Opening a File

� Must include <stdio.h>
� Prototype form:

FILE * fopen (const char * filename, const char * mode)
� FILE is a structure type declared in stdio.h.

� Keeps track of the file mode (read, write, etc), position in the file that we’re
accessing currently, and other details

� May vary from system to system

SCS

218

DAVV

hmehta.scs@dauniv.ac.in

Opening a File

� fopen returns a pointer to a FILE structure
� Must declare a pointer of type FILE to receive that value when it is returned
� Use the returned pointer in all subsequent references to that file
� If fopen fails, NULL is returned.
� The argument filename is the name of the file to be opened

SCS

219

DAVV

hmehta.scs@dauniv.ac.in

Opening a File

� Enclose the mode in double quotes or pass as a string variable
� Modes are:

� r: open the file for reading; fopen returns NULL if the file doesn’t
exist or can’t be opened

� w: create file for writing; destroy old if file exists
� a: open for writing; create if not there; start at the end-of-file

(append mode)
� r+: open for update (r/w); create if not there; start at the beginning
� w+: create for r/w; destroy old if there
� a+: open for r/w;create if not there; start at the end-of-file

SCS

220

DAVV

hmehta.scs@dauniv.ac.in

Four Ways to Read and Write Files

� Formatted file I/O

� Get and put a character

� Get and put a line

� Block read and write

SCS

221

DAVV

hmehta.scs@dauniv.ac.in

Formatted File I/O

� Formatted file input is done through fscanf:
� int fscanf (FILE * fp, const char * fmt, ...) ;

� Formatted file output is done through fprintf:
� int fprintf(FILE *fp, const char *fmt, …);

� fscanf and fprintf work just like scanf and printf, except that a file pointer
is required

SCS

222

DAVV

hmehta.scs@dauniv.ac.in

Formatted File I/O

{ …
FILE *fp1, *fp2;
int n;
fp1 = fopen("file1", "r");
fp2 = fopen("file2", "w");
fscanf(fp1, "%d", &n);
fprintf(fp2, "%d", n);
fclose(fp1);
fclose(fp2);

}

SCS

223

DAVV

hmehta.scs@dauniv.ac.in

Get and Put a Character

#include <stdio.h>
int fgetc(FILE * fp);
int fputc(int c, FILE * fp);

� These two functions read or write a single byte from or to a file
� fgetc returns the character that was read, converted to an integer
� fputc returns the value of parameter c if it succeeds; otherwise, returns

EOF

SCS

224

DAVV

hmehta.scs@dauniv.ac.in

Get and Put a Line

#include <stdio.h>
char *fgets(char *s, int n, FILE * fp);
int fputs(char *s, FILE * fp);

� fgets reads an entire line into s, up to n-1 chars in length; includes the
newline char in the string, unless line is longer than n-1

� fgets returns the pointer s on success, or NULL if an error or end-of-file
is reached

� fputs returns the number of chars written if successful; otherwise,
returns EOF

SCS

225

DAVV

hmehta.scs@dauniv.ac.in

Closing and Flushing Files

int fclose (FILE * fp) ;
� Call to fclose closes fp -- returns 0 if it works, or1 if it fails

� Can clear a buffer without closing it
int fflush (FILE * fp) ;
� Essentially this is a force to disk
� Very useful when debugging

� Without fclose or fflush, updates to a file may not be written to the file
on disk. (Operating systems like Unix usually use “write caching” disk
access.)

SCS

226

DAVV

hmehta.scs@dauniv.ac.in

Detecting End of an Input File

� When using fgetc:
while ((c = fgetc (fp)) != EOF) { … }
� Reads characters until it encounters the EOF char
� The problem is that the byte of data read may actually be indistinguishable

from EOF
� When using fgets:

while (fgets(buf, bufsize, fp) != NULL) { … }
� Reads strings into buf until end of file is reached

SCS

227

DAVV

hmehta.scs@dauniv.ac.in

Detecting End of an Input File

� When using fscanf:
� Tricky to detect end of file: value of fscanf call will be less than the

expected value, but this condition can occur for a number of other
reasons as well

� In all these situations, end of file is detected only when we attempt to
read past it

� Function to detect end of file:
int feof (FILE * fp) ;
� Note: the feof function realizes the end of file only after a read

attempt has failed (fread, fscanf, fgetc)

SCS

228

DAVV

hmehta.scs@dauniv.ac.in

Example
#include<stdio.h>
#define BUFSIZE 100
int main () {

char buf[BUFSIZE];
if ((fp=fopen("file1", "r"))==NULL) {

fprintf (stderr,"Error opening file.");
exit (1);

}
while (!feof(fp)) {

fgets (buf,BUFSIZE,fp);
printf ("%s",buf);

}
fclose (fp);
return 0;

}

This program echoes
the contents of file1 to
standard output with
one flaw: the last line is
echoed twice; it would
be better to use:

while (fgets(buf, BUFSIZE,

fp) != NULL)

printf(“%s”,buf);

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Advanced File Features

SCS

230

DAVV

hmehta.scs@dauniv.ac.in

Block Reading and Writing

� fread and fwrite are binary file reading and writing functions
� Prototypes are found in stdio.h
� Advantages of using binary files:

� Reading and writing are quick, since I/O is not being converted
from/to ASCII characters

� Large amounts of data can be read/written with a single function
call (block reading and writing)

� Disadvantage of using binary files:
� Contents are not easily read by humans

SCS

231

DAVV

hmehta.scs@dauniv.ac.in

Block Reading and Writing

� Generic form:
int fwrite (void *buf, int size, int count, FILE *fp) ;
int fread (void *buf, int size, int count, FILE *fp) ;

� buf: is a pointer to the region in memory to be written/read; it can be a
pointer to anything (a simple variable, an array, a structure, etc)

� size: the size in bytes of each individual data item
� count: the number of data items to be written/read

SCS

232

DAVV

hmehta.scs@dauniv.ac.in

Block Reading and Writing

� Example: We can write all 100 elements from an array of integers to a
binary file with a single statement
� fwrite(buf, sizeof(int), 100, fp);
� Bit patterns for 100*sizeof(int) bytes at address buf are copied

directly to the output file, without any type conversion
� The fwrite (fread) returns the number of items actually written (read)

SCS

233

DAVV

hmehta.scs@dauniv.ac.in

Block Reading and Writing

� Testing for errors:
if ((frwrite(buf,size,count,fp)) != count)

fprintf(stderr, "Error writing to file.");
� Writing value of a double variable x to a file:

fwrite (&x, sizeof(double), 1, fp) ;
�This writes the double x to the file in raw binary format

(I.e.: its internal machine format)

SCS

234

DAVV

hmehta.scs@dauniv.ac.in

Block Reading and Writing

� Writing an array text[50] of 50 characters can be done by:
� fwrite (text, sizeof(char), 50, fp) ;

�or
� fwrite (text, sizeof(text), 1, fp); /* text must be a local array

name */
� fread and fwrite are more efficient than fscanf and fprintf: no

type conversions required

SCS

235

DAVV

hmehta.scs@dauniv.ac.in

Sequential and Random Access

� A FILE structure contains a long that indicates the position (disk
address) of the next read or write

� When a read or write occurs, this position changes
� You can rewind and start reading from the beginning of the file

again:
void rewind (FILE * fp) ;

�A call to rewind resets the position indicator to the
beginning of the file

SCS

236

DAVV

hmehta.scs@dauniv.ac.in

Sequential and Random Access

� To determine where the position indicator is, use:
long ftell (FILE * fp) ;
�Returns a long giving the current position in

bytes
�The first byte of the file is byte zero
�If an error occurs, ftell () returns -1

SCS

237

DAVV

hmehta.scs@dauniv.ac.in

Random Access

� If we’re aware of the structure of a file, we can move the file’s position indicator
anywhere we want within the file (random access):

int fseek (FILE * fp, long offset, int origin) ;
� offset is the number of bytes to move the position indicator
� origin says where to move from

SCS

238

DAVV

hmehta.scs@dauniv.ac.in

Random Access

� Three options/constants are defined for origin:
�SEEK_SET: move the indicator offset bytes from the beginning
�SEEK_CUR: move the indicator offset bytes from its current position
�SEEK_END: move the indicator offset bytes from the end

SCS

239

DAVV

hmehta.scs@dauniv.ac.in

Random Access

� Random access is most often used with binary input files, when speed of
execution matters: we want to avoid having to read in data sequentially
to get to a known location

� Writing to a location in a file other than the end does not insert content: it
overwrites

SCS

240

DAVV

hmehta.scs@dauniv.ac.in

Example: End of File

…
fseek(fp,0,SEEK_END); /* position indicator is 0 bytes from

the end-of-file marker */
printf("%d\n", feof(fp)) /* Value printed is zero */
fgetc(fp); /* fgetc returns -1 (EOF) */
printf("%d\n",feof(fp)); /* Nonzero value, now that an attempt

has been made to read at the end
of the file */

SCS

241

DAVV

hmehta.scs@dauniv.ac.in

File Management Functions

� Erasing a file:
int remove (const char * filename);

�This is a character string naming the file
�Returns 0 if deleted, and -1otherwise
�If no pathname is provided, attempts to delete the file

from the current working directory
�Can fail for several reasons: file not found, user does not

have write privileges, file is in use by another process,
etc

SCS

242

DAVV

hmehta.scs@dauniv.ac.in

File Management Functions

� Renaming a file:
int rename (const char * oldname,

const char * newname);
�Returns 0 if successful, or -1 if an error occurs
�error: file oldname does not exist
�error: file newname already exists
�error: try to rename to another disk

SCS

243

DAVV

hmehta.scs@dauniv.ac.in

Using Temporary Files

� Temporary files: exist only during the execution of the program
� To generate a filename, use:

char *tmpnam (char *s) ;
� Creates a valid filename that does not conflict with any other existing files

� You then open it and write to it
� The file will continue to exist after the program executes unless you delete it

using remove()

SCS

244

DAVV

hmehta.scs@dauniv.ac.in

Example

#include <stdio.h>
int main () {

char buffer[25];
tmpnam(buffer);
printf ("Temporary name is: %s", buffer);
return 0;

}

Output:
Temporary name is: c:\tc\bin\aaaceaywB

SCS

245

DAVV

hmehta.scs@dauniv.ac.in

Implicitly Opened Files: stdin, stdout, and stderr

� Every C program has three files opened for them at start-up: stdin,
stdout, and stderr

� stdin (standard input) is opened for reading, while stdout (standard
output) and stderr (standard error) are opened for writing

� They can be used wherever a FILE * can be used
� Writing to stderr is a good practice when reporting error messages: it

causes all output buffers to be flushed (written), and aids debugging

SCS

246

DAVV

hmehta.scs@dauniv.ac.in

stdin, stdout, and stderr

� Examples:
� fprintf(stdout, "Hello there\n");

� This is the same as printf("Hello there\n");
� fscanf(stdin, "%d", &int_var);

�This is the same as scanf("%d", &int_var);
� fprintf(stderr, "An error has occurred\n");

�Will force anything in the stdout buffer or in the buffer for an
output file to be printed as well

SCS

247

DAVV

hmehta.scs@dauniv.ac.in

The exit () Function

� Used to abort the program at anytime from anywhere before the normal exit
location

� Syntax:
exit (status);

� Example:
#include <stdlib.h>
……
if((fp=fopen("a.txt","r")) == NULL){

fprintf(stderr, "Cannot open file a.txt!\n");
exit(1);

}

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

I/O Redirection, Unconditional Branching, Enumerated
Data Type, Little Endian and Big Endian

SCS

249

DAVV

hmehta.scs@dauniv.ac.in

Redirecting Input/Output on UNIX
and DOS Systems
� Standard I/O - keyboard and screen

�Redirect input and output
� Redirect symbol(<)

�Operating system feature, not a C feature
�UNIX and DOS
�$ or % represents command line
�Example:

$ myProgram < input

�Rather than inputting values by hand, read them from a file
� Pipe command(|)

�Output of one program becomes input of another
$ firstProgram | secondProgram

�Output of firstProgram goes to secondProgram

SCS

250

DAVV

hmehta.scs@dauniv.ac.in

Redirecting Input/Output on UNIX
and DOS Systems
� Redirect output (>)

�Determines where output of a program goes
�Example:

$ myProgram > myFile

�Output goes into myFile (erases previous contents)
� Append output (>>)

�Add output to end of file (preserve previous contents)
�Example:

$ myOtherProgram >> myFile

�Output is added onto the end of myFile

SCS

251

DAVV

hmehta.scs@dauniv.ac.in

The Unconditional Branch: goto

� Unstructured programming
�Use when performance crucial
�break to exit loop instead of waiting until condition becomes false

� goto statement
�Changes flow control to first statement after specified label
�A label is an identifier followed by a colon (i.e. start:)
�Quick escape from deeply nested loop

goto start;

SCS

252

DAVV

hmehta.scs@dauniv.ac.in

Enumeration Constants

� Enumeration
�Set of integer constants represented by identifiers
�Enumeration constants are like symbolic constants whose values are

automatically set
�Values start at 0 and are incremented by 1
�Values can be set explicitly with =
�Need unique constant names

�Example:
enum Months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC};

�Creates a new type enum Months in which the identifiers are set
to the integers 1 to 12

�Enumeration variables can only assume their enumeration constant
values (not the integer representations)

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Inline function, Type Qualifiers and Storage
Classes

SCS

254

DAVV

hmehta.scs@dauniv.ac.in

Inline Functions

� Recall the two different ways to compute the larger of two integers:
� #define max(a,b) ((a)>(b)? (a):(b))
� int max(int a, int b) { return a>b?a:b; }

� To execute a function call, computer must:
� Save current registers
� Allocate memory on the call stack for the local variables, etc, of the

function being called
� Initialize function parameters
� Jump to the area of memory where the function code is, and jump

back when done

SCS

255

DAVV

hmehta.scs@dauniv.ac.in

Inline Functions

� The macro approach is more efficient since it does not have function call
overhead, but, this approach can be dangerous, as we saw earlier

� Modern C compilers provide inline functions to solve the problem:
� Put the inline keyword before the function header

inline int max(int a, int b) {
return a>b?a:b;

}

SCS

256

DAVV

hmehta.scs@dauniv.ac.in

Inline Functions

� You then use the inline function just like a normal function in your
source code

printf("%d", max(x, y));
� When the compiler compiles your program, it will not compile it as a

function; rather, it integrates the necessary code in the line where
max() is called, and avoids an actual function call

� The above printf(…) is compiled to be something like:
printf("%d", x>y?x:y);

SCS

257

DAVV

hmehta.scs@dauniv.ac.in

Inline Functions

� Writing the small but often-used functions as inline functions can
improve the speed of your program

� A small problem: You must include the inline function definition (not just
its prototype) before using it in a file

� Therefore, inline functions are often defined in header (.h) files

SCS

258

DAVV

hmehta.scs@dauniv.ac.in

Inline Functions

� Once you include a header file, you can use:
� Inline functions whose definitions are in the header file
� Normal functions whose prototypes are in the header file

� Another minor problem: Some debuggers get confused when handling inline
functions – it may be best to turn functions into inline functions only after
debugging is finished

SCS

259

DAVV

hmehta.scs@dauniv.ac.in

Two advantages and the main disadvantage to inlining

� The inline function is faster. No parameters are pushed on the stack, no
stack frame is created and then destroyed, no branch is made.

� Secondly, the inline function call uses less code!
� The main disadvantage of inlining is that inline code is not linked and

so the code of an inline function must be available to all files that use it.

SCS

260

DAVV

hmehta.scs@dauniv.ac.in

Type Qualifiers

Type qualifiers that control how variables may be accessed or modified

const
Variables of type const may not be changed by your program. The compiler
is free to place variables of this type into read-only memory (ROM).

const int a=10;
creates an integer variable called a with an initial value of 10 that your program may
not modify.
The const qualifier can be used to prevent the object pointed to by an argument to a
function from being modified by that function. That is, when a pointer is passed to a
function, that function can modify the actual object pointed to by the pointer.

SCS

261

DAVV

hmehta.scs@dauniv.ac.in

Volatile

The modifier volatile tells the compiler that a variable's value may be changed in
ways not explicitly specified by the program. For example, a global variable's
address may be passed to the operating system's clock routine and used to hold the
system time. In this situation, the contents of the variable are altered without any
explicit assignment statements in the program. This is important because most C
compilers automatically optimize certain expressions by assuming that a variable's
content is unchanging if it does not occur on the left side of an assignment
statement; thus, it might not be reexamined each time it is referenced.

SCS

262

DAVV

hmehta.scs@dauniv.ac.in

Const + Volatile

You can use const and volatile together. For example, if 0x30 is assumed to
be the value of a port that is changed by external conditions only, the
following declaration would prevent any possibility of accidental side effects:

const volatile char *port = (const volatile char *) 0x30;

SCS

263

DAVV

hmehta.scs@dauniv.ac.in

Storage Class Specifiers

C supports four storage class specifiers:
extern
static
register
Auto

These specifiers tell the compiler how to store the subsequent variable. The
general form of a variable declaration that uses one is shown here:

storage_specifier type var_name;

SCS

264

DAVV

hmehta.scs@dauniv.ac.in

Global Variables

Global variables are known throughout the program and
may be used by any piece of code. Also, they will hold their value throughout
the program's execution. You create global variables by declaring them outside
of any function. Any expression may access them, regardless of what block of
code that expression is in. In the following program, the variable count has been
declared outside of all functions. Although its declaration occurs before the
main() function, you could have placed it anywhere before its first use as long
as it was not in a function. However, it is usually best to declare global variables
at the top of the program.

SCS

265

DAVV

hmehta.scs@dauniv.ac.in

Global Variables …..

Storage for global variables is in a fixed region of memory set aside for this
purpose by the compiler. Global variables are helpful when many functions in
your program use the same data. You should avoid using unnecessary global
variables, however. They take up memory the entire time your program is
executing, not just when they are needed.

SCS

266

DAVV

hmehta.scs@dauniv.ac.in

Linkage

C defines three categories of linkage: external, internal, and none. In general,
functions and global variables have external linkage. This means they are
available to all files that constitute a program. File scope objects declared as
static (described in the next section) have internal linkage. These are known
only within the file in which they are declared. Local variables have no linkage
and are therefore known only within their own block.

SCS

267

DAVV

hmehta.scs@dauniv.ac.in

Extern
The principal use of extern is to specify that an object is declared with external
linkage elsewhere in the program.
A declaration declares the name and type of an object. A definition causes
storage to be allocated for the object. The same object may have many
declarations, but there can be only one definition.

In most cases, variable declarations are also definitions. However, by preceding
a variable name with the extern specifier, you can declare a variable without
defining it. Thus, when you need to refer to a variable that is defined in another
part of your program, you can declare that variable using extern.

SCS

268

DAVV

hmehta.scs@dauniv.ac.in

Extern

#include <stdio.h>
int main(void)
{

extern int first, last; /* use global vars */
printf("%d %d", first, last);
return 0;

}
/* global definition of first and last */
int first = 10, last = 20;

SCS

269

DAVV

hmehta.scs@dauniv.ac.in

Multiple-File Programs
An important use of extern relates to multiple-file programs. C allows a program
to be spread across two or more files, compiled separately, and then linked
together. When this is the case, there must be some way of telling all the files
about the global variables required by the program. The best (and most
portable) way to do this is to declare all of your global variables in one file and
use extern declarations in the other.

SCS

270

DAVV

hmehta.scs@dauniv.ac.in

Multiple-File Programs
int x, y;
char ch;
int main(void)
{

/* . . . */
}
void func1(void)
{

x = 123;
}

extern int x, y;
extern char ch;
void func22(void)
{

x = y / 10;
}
void func23(void)
{

y = 10;
}

SCS

271

DAVV

hmehta.scs@dauniv.ac.in

Static Variables

Variables declared as static are permanent variables within their own function or
file. Unlike global variables, they are not known outside their function or file, but
they maintain their values between calls. This feature makes them useful when
you write generalized functions and function libraries that other programmers
may use. The static modifier has different effects upon local variables and global
variables.

SCS

272

DAVV

hmehta.scs@dauniv.ac.in

Static Local Variables

When you apply the static modifier to a local variable, the compiler creates
permanent storage for it a static local variable is a local variable that retains its
value Between function calls.

An example of a function that benefits from a static local variable is a number –
series generator that produces a new value based on the previous one.

SCS

273

DAVV

hmehta.scs@dauniv.ac.in

Static Global Variables

Applying the specifier static to a global variable instructs the compiler to create
a global variable known only to the file in which it is declared. Thus, a static
global variable has internal linkage (as described under the extern statement).
This means that even though the variable is global, routines in other files have
no knowledge of it and cannot alter its contents directly, keeping it free from side
effects.

SCS

274

DAVV

hmehta.scs@dauniv.ac.in

Register Variables

The register specifier requested that the compiler keep the value of a variable in
a register of the CPU rather than in memory, where normal variables are stored.
This meant that operations on a register variable could occur much faster than
on a normal variable because the register variable was actually held in the CPU
and did not require a memory access to determine or modify its value.

The register storage specifier originally applied only to variables of type int, char,
or pointer types. type of variable.

hmehta.scs@dauniv.ac.inSchool of Computer Science

Devi Ahilya Vishwavidyalaya

Any Questions

